Transformations of Quadratic Functions

Describe the transformation of $f(x)=x^{2}$ represented by $g(x)$. Then graph $g(x)$.

1. $g(x)=x^{2}-3$
2. $g(x)=(x+5)^{2}$
3. $g(x)=(x-2)^{2}+4$

4. $g(x)=-(x+4)^{2}-1$

5. $g(x)=1 / 2(x-1)^{2}$

6. $g(x)=-2 x^{2}+2$

In Exercises 7-11, write a rule for $g(x)$ described by the transformations of graph $f(x)$. Then identify the vertex.
7. $f(x)=x^{2}$; vertical stretch by a factor of 4 and a reflection in the x-axis, followed by a translation 2 units up.
8. $f(x)=x^{2}$; vertical compression by a factor of $1 / 3$, followed by a translation 3 units right and 4 units down.
9. $f(x)=(x+6)^{2}+3$; vertical stretch by a factor of 2 and a translation 1 unit down, followed by a reflection over the x-axis.
10. $f(x)=-2(x-1)^{2}-4$; translation 3 units left and 4 units up.
11. $f(x)=x^{2}-6$; vertical compression by a factor of $1 / 4$ and a translation 1 unit right followed by a reflection over the x-axis.

In Exercises 12-15, match the function with the correct transformation of the graph $f(x)$.
12. $f(x-1)$
13. $f(x)+1$
14. $f(x-1)+1$

A.

B.

C.

D.

In Exercises 16-18 Describe and graph the transformations of $f(x)=x^{2}$ onto $g(x)$. Then graph.
16. $g(x)=f(x+5)-3$

17. $g(x)=-f(x-1)-1$

18. $g(x)=2 \cdot f(x)+2$

In Exercises 19-21 the function $f(x)$ is transformed onto $g(x)$. Describe the transformation then write the rule for $\mathrm{g}(\mathrm{x})$.
19. $f(x)=2(x+1)^{2}+5$
$g(x)=f(x-6)+1$
20. $f(x)=-(x-4)^{2}+1$
$g(x)=-2 \cdot f(x)+3$
21. $f(x)=3 x^{2}+6 x$
$g(x)=-f(x+2)+2$

